PHYS 412
Heliophysics Fall 2019
Division III
Cross-listed ASTR 412
This is not the current course catalog

Class Details

We study all aspects of the Sun, our nearest star. This semester follows the total solar eclipses of August 21, 2017, whose totality crossed the U.S. from coast to coast, and the July 2, 2019, total solar eclipse that crossed Chile and Argentina. In addition to discussing our observations of these eclipses and what has been learned about the solar atmosphere from eclipse research, we discuss the solar interior (including the Nobel-prize-winning solar neutrino experiment and helioseismology), the photosphere, the chromosphere, the corona, and the solar wind. We discuss the Sun as an example of stars in general. We discuss both theoretical aspects and observational techniques, including work at recent total solar eclipses. We discuss results from current spacecraft, including the Solar and Heliospheric Observatory (SOHO), the Solar Dynamics Observatory, the Sun Watcher (SWAP), and Hinode (Sunrise), and the new GOES/UVSI (Solar Ultraviolet Imager) run by an alumnus as well as additional Total Solar Irradiance measurements from ACRIMSAT and SORCE. We will discuss the role of solar observations in confirming Einstein’s General Theory of Relativity with the bending of light at the 1919, 1922, and 2017 total solar eclipses as well as gravitational redshift measurements in solar spectral lines, extending our discussion to the recent “chirp” of gravitational radiation reported from several colliding black holes and neutron stars observed with the Laser Interferometer Gravitational-wave Observatory (LIGO). We hope to observe the transit of Mercury across the face of the Sun on November 11, 2019, during the semester; we also discuss our data analysis of recent transits of Mercury we observed from the ground and from space (most recently in May 2016). We will highlight the 2004 and 2012 transits of Venus across the face of the Sun as observed from Earth, the first such transits of Venus since 1882, as well as our work in observing transits of Venus from Jupiter with the Hubble.
The Class: Format: tutorial
Limit: 10
Expected: 10
Class#: 1039
Grading: no pass/fail option, no fifth course option
Requirements/Evaluation: biweekly tutorial presentations; biweekly response to colleagues' presentations
Prerequisites: ASTR 111 or a 200-level Physics course; or permission of the instructor
Distributions: Division III
Notes: This course is cross-listed and the prefixes carry the following divisional credit:
ASTR 412 Division III PHYS 412 Division III

Class Grid

Course Catalog Archive Search

TERM/YEAR
TEACHING MODE
SUBJECT
DIVISION



DISTRIBUTION



ENROLLMENT LIMIT
COURSE TYPE
Start Time
End Time
Day(s)