To determine if a course is remote, hybrid, or inperson use the catalog search tool to narrow results. Otherwise, when browsing courses, the section indicates teaching mode:
R = Remote
H = Hybrid
0 = Inperson
Teaching modes (remote, hybrid, inperson) are subject to change at any point. Please pay close attention when registering. Depending on the timing of a teaching mode change, faculty also may be in contact with students.
MATH
420
Analytic Number Theory
Spring 2021
Division III
Quantative/Formal Reasoning
Class Details
How many primes are smaller than x? How many divisors does an integer n have? How many different numbers appear in the N x N multiplication table? Precise formulas for these quantities probably don’t exist, but over the past 150 years tremendous progress has been made towards understanding these and similar questions using tools and methods from analysis. The goal of this tutorial is to explain and motivate the ubiquitous appearance of analysis in modern number theory–a surprising fact, given that analysis is concerned with continuous functions, while number theory is concerned with discrete objects (integers, primes, divisors, etc). Topics to be covered will include some subset of the following: asymptotic analysis, partial and EulerMaclaurin summation, counting divisors and Dirichlet’s hyperbola method, the randomness of prime factorization and the ErdosKac theorem, the partition function and the saddle point method, the prime number theorem and the Riemann zeta function, primes in arithmetic progressions and Dirichlet Lfunctions, the Goldbach conjecture and the circle method, and sieve methods and gaps between primes.
The Class:
Format: tutorial
Limit: 10
Expected: 10
Class#: 5366
Grading: no pass/fail option, no fifth course option
Limit: 10
Expected: 10
Class#: 5366
Grading: no pass/fail option, no fifth course option
Requirements/Evaluation:
Regularly preparing lectures and writing expository essays in LaTeX. No exams.
Prerequisites:
MATH 350 or MATH 351 and familiarity with basic modular arithmetic are hard prerequisites. Familiarity with complex analysis and abstract algebra recommended, but not required.
Enrollment Preferences:
Students with complex analysis background will be given priority.
Distributions:
Division III
Quantative/Formal Reasoning
QFR Notes:
It's math.
Class Grid
Updated 2:57 pm

HEADERS
Column header 1
CLASSESColumn header 2DREQColumn header 3INSTRUCTORSColumn header 4TIMESColumn header 5CLASS#Column header 6ENROLLColumn header 7CONSENT

MATH 420  RT1 (S)
TUT Analytic Number Theory
MATH 420  RT1 (S) TUT Analytic Number TheoryDivision III Quantative/Formal ReasoningTBA5366ClosedInst
Main Social Nav