MATH 394
Galois Theory
Last Offered Spring 2022
Division III
Quantitative/Formal Reasoning
This course is not offered in the current catalog
Class Details
Some equations–such as x^5 – 1 = 0–are easy to solve. Others–such as x^5 – x – 1 = 0–are very hard, if not impossible (using standard mathematical operations). Galois discovered a deep connection between field theory and group theory that led to a criterion for checking whether or not a given polynomial can be easily solved. His discovery also led to many other breakthroughs, for example proving the impossibility of squaring the circle or trisecting a typical angle using compass and straightedge. From these not-so-humble beginnings, Galois theory has become a fundamental concept in modern mathematics, from topology to number theory. In this course we will develop the theory and explore its applications to other areas of math.
The Class:
Format: lecture
Limit: 50
Expected: 10
Class#: 3275
Grading: yes pass/fail option, yes fifth course option
Limit: 50
Expected: 10
Class#: 3275
Grading: yes pass/fail option, yes fifth course option
Requirements/Evaluation:
written homeworks and exams
Prerequisites:
MATH 355
Enrollment Preferences:
discretion of the instructor
Unit Notes:
this course is not a senior seminar, so it does not fulfill the senior seminar requirement for the Math major
Distributions:
Division III
Quantitative/Formal Reasoning
QFR Notes:
This is a math class
Class Grid
Updated 5:52 pm
-
HEADERS
Column header 1
CLASSESColumn header 2DREQColumn header 3INSTRUCTORSColumn header 4TIMESColumn header 5CLASS#
-
MATH 394 - LEC Galois Theory
MATH 394 LEC Galois TheoryDivision III Quantitative/Formal ReasoningNot offered
Megamenu Social