MEMBERS OF THE CENTER FOR ENVIRONMENTAL STUDIES

Alex Apotsos, Visiting Lecturer in Geosciences
Henry W. Art, Professor of Biology and Environmental Studies
Sonya Auer, Visiting Assistant Professor of Biology
Lois M. Banta, Professor of Biology
Ron D. Bassar, Assistant Professor of Biology
Ben Benedict, Lecturer in Art
Mary K. Bercaw-Edwards, Associate Professor for Literature of The Sea, Williams-Mystic Maritime Studies Program
Julie C. Blackwood, Assistant Professor of Mathematics
Roger E. Bolton, Professor of Economics, Emeritus
Cory E. Campbell, instructional Technology Specialist
Phoebe A. Cohen, Associate Professor of Geosciences
Anthony J. Carrasquillo, Assistant Professor of Chemistry
David Cassuto, Class of 1946 Visiting Distinguished Professor of Environmental Studies
Jose E.A. Constantine, Assistant Professor of Geosciences
Mea S. Cook, Associate Professor of Geosciences
David P. Dethier, Professor of Geosciences*
Joan Edwards, Professor of Biology
Laura Ephraim, Associate Professor of Political Science
Michael Evans, Assistant Director of The Zilkha Center for Environmental initiatives
Jessica M. Fisher, Assistant Professor of English
Antonia Foias, Professor of Anthropology and Sociology
Jennifer L. French, Professor of Spanish
Sarah S. Gardner, Lecturer in Environmental Studies
Matthew Gibson, Assistant Professor of Economics
Lisa Gilbert, Associate Professor of Geosciences and Marine Sciences
ENVIRONMENTAL STUDIES

Environmental issues call upon citizens, organizations, and governments to grasp complex scientific concepts, address conflicting human values, and make difficult economic, political and ethical choices. A proper understanding of environmental issues is therefore an interdisciplinary exercise. The concentration in Maritime Studies is designed to help students to:

- Effectively address complex environmental issues by integrating perspectives from the natural sciences, the social sciences, and the arts and humanities;
- Understand ecological principles and the nature of living systems;
Apply scientific methods to collect environmental data and evaluate environmental quality;

Understand the political and economic factors that inform, enable, and constrain environmental policy;

Understand the social, cultural, and historical factors that shape environmental thought, history, and behavior;

Develop significant understanding of one or more of the essential methodological approaches required in addressing environmental challenges;

Apply their learning in a practical setting.

The program is administered by the Center for Environmental Studies (CES), located in the Class of 1966 Environmental Center. Founded in 1967, CES was one of the first environmental studies programs at a liberal arts college. In addition to the academic program described below, CES is the focus of a varied set of activities in which students lead and participate, often with other members of the Williams community. CES offers extensive resources including databases, funding for student-organizations, and student initiated activities, and generous support for summer research and internships. The Class of 1966 Center, a Living Building and the Program’s home, includes a classroom, living room, study rooms, kitchen, as well as student gardens. The CES manages the Hopkins Memorial Forest, a 2600-acre natural area northwest of campus, in which there are field-study sites and a laboratory, and where passive-recreation opportunities may be found in all seasons. CES also operates the Environmental Analysis Laboratory in Morley Science Center. The Maritime Studies concentration builds on the course offerings of the Williams-Mystic Maritime Studies Program at Mystic Seaport.

ADVISING

Concentrators (or first-years and sophomores interested in the concentration offered by CES) are encouraged to talk at any time with the Chair or Associate Director of Environmental Studies, or any other members of CES or Maritime Studies for advice. All incoming concentrators will choose a faculty advisor in the spring of their sophomore year.

Advisors for 2019-20: Henry Art, Sarah Gardner, Pia Kohler, Laura Martin, Mea Cook, James Manigault-Bryant.

CONCENTRATION IN MARITIME STUDIES

The Maritime Studies concentration provides students with an opportunity to explore how humans interact with the environment, including the maritime environment. Understanding the oceans and our interactions with them is of increasing importance in this era of climate change, sea-level rise, fisheries crises, and the internationalization of the high seas. We encourage students to investigate our WaterWorld from the perspectives of the humanities, social sciences, and physical sciences. Maritime Studies is an interdisciplinary, cross-divisional program that includes the literature, history, policy issues, and science of the ocean. Candidates for the concentration in Maritime Studies must complete a minimum of seven courses: the interdisciplinary introductory course (GEOS 104 Oceanography), four intermediate core courses (at Williams-Mystic), an elective, and the senior seminar.

Students who have completed other study-away programs that emphasize maritime studies should consult with the CES chair about the possibility of completing the Maritime Studies concentration.

Required Courses (7 courses)

Introductory Course

MAST/ENVI/GEOS 104 Oceanography

Students who take MAST 211/GEOS 210 Oceanographic Processes at Williams-Mystic can substitute an extra elective in lieu of GEOS 104.

Capstone Course

ENVI/MAST 412 Senior Seminar: Perspectives on Environmental Studies

Core Courses (taken as part of Williams-Mystic program at Mystic Seaport):

MAST/ENGL 231 Literature of the Sea

MAST 311/BIOL 231 Marine Ecology OR MAST 211/GEOS 210 Oceanographic Processes

MAST/ENVI 351/ PSCI 319 Marine Policy

MAST/HIST 352 America and the Sea, 1600-Present

Elective Courses

Elective courses are listed based on either a clear maritime statement in the course description or broad practical/theoretical applicability to maritime studies. Concentrators will take a minimum of one course from the list below. If concentrators find other courses in the catalog that they believe meet the requirements for a MAST elective, they may bring them to the attention of the Chair or Associate Director.
INDEPENDENT STUDY AND WINTER STUDY

In addition to courses fulfilling the Maritime Studies concentration requirements, the following courses are offered:

- MAST 397, 398 Independent Study: Maritime Studies
- MAST 493-W31-494 Senior Thesis: Maritime Studies

Winter study courses play an important role in the program, offering opportunities to learn about aspects of environmental studies with which students would like to become more familiar. We encourage students to bear in mind their interests in the environment and maritime studies when reviewing each year’s Winter Study offerings.

HONORS IN MARITIME STUDIES

Candidates for honors in Maritime Studies will complete a thesis in their senior year. The project will involve original research (archive, museum, field, or laboratory) followed by on-campus analysis and write-up of results. The thesis may either be a one-semester plus winter study project, or a full year (two semesters plus winter study). In either case, data collection during the summer before the senior year may be necessary. In some cases, the thesis project may be a continuation and expansion of the student’s Williams-Mystic research project. Honors will be awarded if the thesis shows a high degree of scholarship, originality, and intellectual insight.
MAST 104 (F) Oceanography

Cross-listings: MAST 104 GEOS 104 ENVI 104

Secondary Cross-listing

The oceans cover three quarters of Earth's surface, yet oceanography as a modern science is relatively young: the first systematic explorations of the geology, biology, physics and chemistry of the oceans began in the late 19th century. This introduction to ocean science includes the creation and destruction of ocean basins with plate tectonics; the source and transport of seafloor sediments and the archive of Earth history they contain; currents, tides, and waves; photosynthesis and the transfer of energy and matter in ocean food webs; the composition and origin of seawater, and how its chemistry traces biological, physical and geological processes; oceans and climate change; and human impacts.

Class Format: three 50-minute lecture/discussion meetings each week; 2-hour lab every second week; one all-day field trip to the Atlantic coast of New England.

Requirements/Evaluation: lab activities (25%), homework (25%), quizzes (5%), three exams (45%)

Prerequisites: none

Enrollment Limit: 48

Enrollment Preferences: first year and second year students, Geosciences majors, Maritime Studies concentrators

Expected Class Size: 48

Grading: yes pass/fail option, yes fifth course option

Distributions: (D3)

This course is cross-listed and the prefixes carry the following divisional credit:

MAST 104 (D3) GEOS 104 (D3) ENVI 104 (D3)

Attributes: ENVI Natural World Electives EXPE Experiential Education Courses GEOS Group A Electives - Climate + Oceans

Fall 2022

LEC Section: 01 MWF 9:00 am - 9:50 am Mea S. Cook
LAB Section: 02 W 1:00 pm - 3:00 pm Mea S. Cook
LAB Section: 03 R 1:00 pm - 3:00 pm Mea S. Cook

MAST 211 (F)(S) Oceanographic Processes

Cross-listings: GEOS 210 MAST 211

Primary Cross-listing

Part of the Williams-Mystic Coastal and Ocean Studies Program, this course provides an introduction to physical, geological, chemical, and biological oceanography. Using local field sites as well as places visited on field seminars, we will investigate why the Earth has oceans, why they are salty, how they move and flow, reasons for sea level change on both long and short timescales, and how our oceans interact with the atmosphere to control global climate. We will emphasise societal interactions with the ocean, and will consider coastal processes including land loss. We will apply an environmental justice and anti-racist lens to our discussions. Field work will take place on shores in southern New England, as well as during field seminars on the Atlantic ocean, the West Coast and the Mississippi River Delta. This course is in the Oceans and Climate group for the Geosciences major.

Class Format: Flipped classroom will focus on active learning using data-based exercises. Mini-symposia will involve student research and discussion.

Requirements/Evaluation: graded lab exercises, mini-symposium participation, and a research project

Prerequisites: none

Enrollment Limit: 24

Enrollment Preferences: none

Expected Class Size: 10
Grading: no pass/fail option, no fifth course option

Unit Notes: This course is taught at our Mystic Seaport campus. Students must be enrolled in the Williams-Mystic Coastal and Ocean Studies Program.

Distributions: (D3)

This course is cross-listed and the prefixes carry the following divisional credit:

GEOS 210 (D3) MAST 211 (D3)

Attributes: ENVI Natural World Electives EXPE Experiential Education Courses GEOS Group A Electives - Climate + Oceans

MAST 226 (S) The Oceans and Climate (WS)

Cross-listings: GEOS 226 ENVI 226 ENVI 252 MAST 226

Secondary Cross-listing

The oceans are a fundamental part of Earth's climate system. Ocean currents redistribute heat and water vapor around the globe, controlling temperature and precipitation patterns. Marine phytoplankton blooms and air-sea gas exchange modulate the atmospheric carbon dioxide concentration. The dynamic interaction of the atmosphere and the sea surface results in multi-year climate variations such as the El Niño-Southern Oscillation. This course will examine gradual and abrupt climate shifts from Earth's history and the ocean's role in driving, amplifying or dampening the changes, the ocean's response to anthropogenic greenhouse gas emissions, and the projected impacts of continued emissions and climate change on the ocean in the coming decades and millennia. We will analyze articles from the scientific literature that lay out the theory on the ocean's influence on climate, reconstruct past climate and ocean changes, test the mechanisms responsible for those changes, and with that knowledge, project the consequences of continued anthropogenic greenhouse gas emissions. Topics may include the climate effects of opening and closing seaways with plate tectonics, ocean feedbacks that amplify the intensity of ice ages, the instability of ocean circulation during ice-sheet retreat, the evolution of the El Niño-Southern Oscillation with changing carbon dioxide through the geologic past and the next century, ocean heat and carbon dioxide uptake during the last century and into the future, and the impact on sea level, seafloor methane reservoirs, ocean acidification, oxygenation and marine ecosystems. This course is in the Oceans and Climate group for the Geosciences major.

Requirements/Evaluation: evaluation will be based on the critical analysis of reading from the scientific literature through discussion, writing and revision

Prerequisites: at least one GEOS course

Enrollment Limit: 10

Enrollment Preferences: students with a strong interest in Geosciences and Geosciences majors

Expected Class Size: 10

Grading: no pass/fail option, no fifth course option

Distributions: (D3) (WS)

This course is cross-listed and the prefixes carry the following divisional credit:

GEOS 226 (D3) ENVI 226 (D3) ENVI 252 (D3) MAST 226 (D3)

Writing Skills Notes: each student will write five 5-page position papers and five 1-page response papers; students will give and receive feedback through peer review and tutorial meeting discussions and will develop their writing and critical analysis skills through revision

Attributes: ENVI Natural World Electives GEOS Group A Electives - Climate + Oceans MAST Interdepartmental Electives

Not offered current academic year

MAST 231 (F)(S) Literature of the Sea (DPE)
The ocean, and human relationships with it, have been central features of literatures and cultures around the world for more than a thousand years. But since literary study is typically based around authors’ homelands, careful examination of the oceanic experience is often pushed to the periphery—an "empty space" to be crossed between nations, a "vast darkness" antithetical to human life, or a mirror for land-borne concerns.

Increasingly, however, scholars and readers are centering the sea and stories about it as a means stepping outside human frameworks of space and time, situating the complex emotions and narratives inspired by the ocean into a complex network of geologic history and teeming other-than-human life. This course examines a wide range of texts and perspectives on the ocean and human relationships with it. Doing so will help us consider how literature both plays into and subverts dominant viewpoints of the ocean. Through texts that consider 19th-century whaling, the Middle Passage, the postcolonial Caribbean, and islands throughout the Pacific Ocean, we will explore a range of questions, including: What can we learn from examining efforts to write about the ocean? How do ocean stories help individuals understand themselves, their communities, and their place in global environments? What can the range of cultural and literary perspectives on our "single, global ocean" reveal about the ways different people are both connected with and profoundly distant from each other? Most importantly, we will practice, as a classroom community, different strategies for carefully reading texts while connecting them to cultural traditions, surrounding environments, and personal experiences.

Class Format: weekly roundtable discussions, including coastal and near-shore field trips and multiple field seminars.

Requirements/Evaluation: regular papers, class participation, journal-writing, and a final assignment

Prerequisites: N/A

Enrollment Limit: 25

Enrollment Preferences: Williams-Mystic Students only

Expected Class Size: 20

Grading: no pass/fail option, no fifth course option

Unit Notes: offered only at Mystic Seaport

Distributions: (D1) (DPE)

This course is cross-listed and the prefixes carry the following divisional credit:

MAST 231 (D1) ENGL 231 (D1)

Difference, Power, and Equity Notes: This course focuses on the range of cultural perspectives about the sea, as well as the ways those perspectives can unsettle and challenge dominant narratives about the sea and its role in colonial expansion. Furthermore, this course centers voices that are typically overlooked in the genre of “Sea Literature,” paying particular attention to Indigenous and African-American narratives about the ocean.

Attributes: AMST Arts in Context Electives ENVI Humanities, Arts + Social Science Electives

Fall 2022

SEM Section: 01 MW 10:30 am - 11:45 am Ned G. Schaumberg

Spring 2023

SEM Section: 01 MW 10:30 am - 11:45 am Ned G. Schaumberg

MAST 263 (S) The Global Ocean: An Interdisciplinary Introduction

Cross-listings: MAST 263 ENVI 263

Primary Cross-listing

Though it covers most of the planet, the ocean’s importance to everyday life is easy to overlook. Its roles as a cultural symbol, resource, highway, and climate regulator make it essential to life around the world. This interdisciplinary course, team-taught by the faculty of the Williams-Mystic Program, will examine key issues in each of the world’s oceans while introducing students to the ways these issues connect multiple disciplines and transcend physical, political, and imaginary ocean boundaries. By drawing on the expertise of the five professors -- from humanities, social sciences, and sciences -- this course facilitates the critical study of the ocean from an interdisciplinary perspective and helps them consider their own role in the shifting relationship between humanity and the ocean. This seminar-style course will meet twice a week online, with students assessed by their participation, response papers, and final project, while helping them apply interdisciplinary skills to pressing sustainability issues connecting the environment and society.

Requirements/Evaluation: Five 2-page papers, participation, and a 6-8 page final paper
MAST 265 (F) Coral Reefs: Ecology, Threats, & Conservation

Cross-listings: ENV 265 BIOL 165 MAST 265

Primary Cross-listing

Coral reefs are a fascinating ecosystem found throughout the world's tropical oceans. Corals can thrive in nutrient-poor oceans because of the mutualistic relationship with algal symbionts. And as a foundational species, corals provide a habitat for numerous species, possibly the highest diversity found on the planet. However, these complex and beautiful ecosystems are declining worldwide from a variety of local and global threats. In this course, we will explore coral reef ecology through an in-depth examination of the biotic and abiotic factors contributing to the ecosystem’s functioning. We will also investigate the causes and consequences of threats to coral reefs, such as ocean warming, ocean acidification, and resource extraction. Finally, we will identify the many efforts worldwide to conserve coral reefs and promote their resilience. In this seminar course, you will demonstrate your proficiency through knowledge assessments, short writing reflections, a virtual coral fragmentation experiment, and a creative advocacy project. This course aims to deepen your awareness of the complex species interactions on coral reefs and the physical factors affecting coral survival while fostering hope through current conservation efforts.

Requirements/Evaluation: Four 1-paragraph discussion board post, One 20-question knowledge assessment (quiz), Three 2-page writing reflections, One lab results and discussion write-up 2-3 pages figures included, and a creative (medium is student choice) advocacy project.

Prerequisites: none, open to all students
Enrollment Limit: 20
Enrollment Preferences: 1. First-Year, 2. Sophomores
Expected Class Size: 16
Grading: yes pass/fail option, yes fifth course option
Distributions: (D3)
This course is cross-listed and the prefixes carry the following divisional credit:
ENV 265 (D3) BIOL 165 (D3) MAST 265 (D2)
Attributes: ENVI Natural World Electives
Not offered current academic year

MAST 266 (S) Reading Water (WS)

Cross-listings: ENV 266 MAST 266

Primary Cross-listing

Water has such profound and far-reaching influence on individuals, societies, and the planet that it simultaneously risks going overlooked and appearing clichéd. Human beings are made of it and need it to live, yet will die if immersed in it. It is venerated by cultures around the world, yet most people either cannot access clean water, or don’t know where their clean water is piped in from. It covers the earth’s surface, and has shaped it over eons, yet scientists are still not sure how it came to be here in the first place. This wide-ranging influence also presents challenges for traditional academic structures; thinking about water demands crossing times, spaces, and disciplines. This course will explore the wide-ranging and diverse ways water impacts individuals, cultures, and the environments they call home by drawing on a range of content: hydrology, literature, political theory, storytelling, geography, and more. To do this, we will also develop and examine methods of critically reading as "non-experts"—reading scientific
articles as rhetorical objects and reading for scientific principles in literature, for instance—to explore what interdisciplinary thinking opens up (and inhibits), and thus how to effectively engage with and create interdisciplinary work. The goal here is not to define water's cultural or scientific importance, or to determine which disciplines "best" combine to explain water, or to come up with humanities-based solutions to "the water crisis." Rather, these texts, and the water that flows through them will help us explore the opportunities and limits of human perceptions of the other-than-human world. It will help us consider the extent to which those perceptions both shape, and are shaped by, a seemingly simple molecule. And it will help us imagine epistemologies and ontologies that account for the ways water simultaneously flows through us, around us, and through the deep geological history of the planet. Course Texts: Tristan Gooley -- *How to Read Water* (selections) Vandana Shiva -- *Water Wars* (selections) Luna Leopold -- *Water, Rivers, and Creeks* (selections) Richard White -- *The Organic Machine* Linda Hogan -- *Solar Storms* Marc Reisner -- *Cadillac Desert* Jesmyn Ward -- *Salvage the Bones* John McPhee -- "Atchafalaya" Emmi Itäranta -- *Memory of Water* Brenda Hillman -- "The Hydrology of California"

Class Format: The class will be primarily discussion-based, and will ask students to lead and structure discussions. Students will have questions, reflections, and insights prepared before class, and use those to drive our in-class activities.

Requirements/Evaluation: 100pg of reading a week, give or take. Approx 20-25 pages of written work throughout the semester.

Prerequisites: None

Enrollment Limit: 20

Enrollment Preferences: Preference to majors, and then to sophomores and juniors, respectively.

Expected Class Size: 20

Grading: yes pass/fail option, no fifth course option

Distributions: (D1) (WS)

This course is cross-listed and the prefixes carry the following divisional credit:

ENVI 266 (D1) MAST 266 (D1)

Writing Skills Notes: Students will write four papers of increasing complexity that will require workshopping and drafts. Each of these papers will receive forward-looking writing feedback from me. The first paper centers on paragraph-level stylistic choices, the second on argument/evidence connections, the third on genre, and the final paper synthesizes these writing skills. In addition, students' final grades will allow for revision of earlier papers to encourage and assess growth of writing skills.

Not offered current academic year

MAST 268 (S) Debating Ocean Biodiversity at the Intersection of Science and Policy

Cross-listings: ENVI 268 MAST 268

Primary Cross-listing

Biodiversity in the ocean is facing an onslaught of challenges, both directly and indirectly. It is likely that we are undergoing a sixth mass extinction event, where diversity of life on earth is stunningly at risk. Fortunately, however, we are also finding innovative ways to solve issues and attempt to stave off these dramatic changes to our ecosystems. These solutions potentially have both positive and negative effects. Difficult tradeoffs must be weighed and decisions must be made as people wrestle with known knowns, known unknowns, and unknown unknowns. In this class, we will explore five issues that relate to biodiversity in the ocean. You will have the opportunity to investigate one side of an issue, to collect supporting information, and to advocate for your position all while learning about current biodiversity issues in the ocean. You will be challenged to weigh conflicting evidence to find a positive outcome. Throughout the class you will practice critical thinking, evaluation, and synthesizing skills as you work with multiple viewpoints. Class time will include lecture, in-class group work, and student-led debates of timely, controversial issues. You will be assessed on summaries of information, reflections on topics, and a final project on an issue of your choice relating to ocean biodiversity.

Requirements/Evaluation: Five 2-page papers, participation, and a 6-8 page final paper

Prerequisites: none, open to all students

Enrollment Limit: 20

Enrollment Preferences: 1. first years, 2. sophomores, 3. MAST concentrators

Expected Class Size: 15

Grading: yes pass/fail option, yes fifth course option

Distributions: (D2)

This course is cross-listed and the prefixes carry the following divisional credit:

ENVI 268 (D2) MAST 268 (D2)
MAST 311 (F)(S) Marine Ecology

Cross-listings: MAST 311 BIOL 231

Primary Cross-listing

We have explored only a fraction of the ocean, with about 10% of marine species classified and 20% of the ocean mapped. Many discoveries remain to be made, and marine ecology is one technique to uncover new insights. The field of marine ecology, rooted in the theory of evolution, describes the mechanisms and processes that drive the diversity, abundance, and distribution of marine organisms. The goal is to document natural patterns and make predictions about how species will respond to environmental changes by investigating the relationship between the abiotic environment and biotic interactions. This course will take a deep dive into the unique challenges to life in the ocean. You will compare and contrast different marine ecosystems, such as coral reefs, kelp forests, and the deep sea. You will also practice a marine ecologist's skillset as you design, carry out, and analyze your own research project, which will improve your scientific writing, data analysis, and communication skills. Importantly, you will connect your research and course topics to larger marine conservation issues and broader societal impacts.

Class Format: including coastal and near-shore field trips, 10 days offshore, and a laboratory or field research project

Requirements/Evaluation: two tests, a research project, and a presentation

Prerequisites: BIOL 101 or GEOS/MAST 104, or permission of instructor

Enrollment Limit: 16

Enrollment Preferences: none

Grading: yes pass/fail option, yes fifth course option

Unit Notes: This course is only offered through the Williams-Mystic Maritime Studies Program located in Mystic, CT. satisfies the distribution requirement for the Biology major.

Distributions: (D3)

This course is cross-listed and the prefixes carry the following divisional credit:

MAST 311 (D3) BIOL 231 (D3)

Attributes: ENVI Natural World Electives EXPE Experiential Education Courses

Fall 2022

LEC Section: 01 TR 11:00 am - 12:15 pm Tim J. Pusack
LAB Section: 02 R 1:00 pm - 4:30 pm Tim J. Pusack

Spring 2023

LEC Section: 01 TR 11:00 am - 12:15 pm Tim J. Pusack
LAB Section: 02 R 1:00 pm - 4:30 pm Tim J. Pusack

MAST 351 (F)(S) Marine Policy (DPE) (WS)

Cross-listings: MAST 351 ENVI 351 PSCI 319

Primary Cross-listing

Coastal communities are home to nearly 40% of the U.S. population, but occupy only a small percentage of our country's total land area. Intense population density, critical transportation infrastructure, significant economic productivity, and rich cultural and historic value mark our coastal regions as nationally significant. But, coastal and ocean-based climate-induced impacts such as sea level rise, ocean warming and acidification pose extraordinary challenges to our coastal communities, and are not borne equally by all communities. This seminar considers our relationship with our ocean and coastal environments and the foundational role our oceans and coasts play in our Nation's environmental and economic sustainability as well as ocean and coastal climate resiliency. Through the lens of coastal and ocean governance and policy-making, we critically examine conflict of use issues relative to climate change, climate justice, coastal zone management, fisheries, ocean and coastal pollution and marine biodiversity.

Class Format: This class is taught only at Williams-Mystic in Mystic, Connecticut and includes coastal and near-shore interdisciplinary field seminars,
and 10 days offshore.

Requirements/Evaluation: Weekly Readings; Class Participation; Small and large group strategy exercises (written and oral); Written Research Project: issues paper and draft research paper; Final Research Project: multiple formats available

Prerequisites: none

Enrollment Limit: 23

Enrollment Preferences: must be enrolled at Williams-Mystic in Mystic, Connecticut

Expected Class Size: 22

Grading: no pass/fail option, no fifth course option

Unit Notes: must be enrolled at Williams-Mystic in Mystic, Connecticut

Distributions: (D2) (DPE) (WS)

This course is cross-listed and the prefixes carry the following divisional credit:
MAST 351 (D2) ENVI 351 (D2) PSCI 319 (D2)

Writing Skills Notes: Each student will write one 3-5 page research issues paper and one 8-10 page draft research paper as well as a final project with written components equaling 5-8 pages. Each submission receives written feedback from the professor, including research guidance, input on grammar, structure, language, analysis. Students also receive verbal feedback in individual conferences to discuss research paper organization, analysis, structure and grammar as well as final project input.

Difference, Power, and Equity Notes: Coastal and ocean policy issues relating to climate change, coastal zone management, fisheries, ocean pollution and marine biodiversity impact environmental and climate justice. Students examine coastal governance while considering the disproportionate burdens on underrepresented populations in U.S. coastal communities caused by climate change and coastal policies. Students analyze multi-disciplinary evidence and work to strengthen their integrative, analytical, writing, and advocacy skills.

Attributes: ENVI Environmental Policy EXPE Experiential Education Courses POEC Comparative POEC/Public Policy Courses

Fall 2022
SEM Section: 01 F 9:00 am - 12:00 pm Catherine Robinson Hall

Spring 2023
SEM Section: 01 TBA Catherine Robinson Hall

MAST 352 (F)(S) American Maritime History (DPE) (WS)

Cross-listings: HIST 352 MAST 352

Primary Cross-listing

This course explores themes in American maritime history from the colonial era to the 21st century. We will consider the dynamic relationship between the sea and American life, and the broad influence that each has had on the other. This relationship led to interactions with the water as a highway for the transportation of not just people and goods, but powerful new forces and ideas. The water creates a unique space for the formation of new communities and identities, while also acting as an important, and often exploited, resource. We will sample from different fields of inquiry including labor, environmental, cultural, and political history to gain a deeper understanding of diverse people's complex interactions with the oceans and seas.

Class Format: Seminars, discussions, and field seminars

Requirements/Evaluation: Participation in class discussions, activities, and presentations, regular papers, and a final independent research project

Prerequisites: None

Enrollment Limit: 27

Enrollment Preferences: If course over-enrolls, preference will be given to sophomores and juniors

Expected Class Size: 22

Grading: no pass/fail option, no fifth course option

Unit Notes: Offered only at Mystic Seaport

Distributions: (D2) (DPE) (WS)

This course is cross-listed and the prefixes carry the following divisional credit:
Writing Skills Notes: Students must complete regular writing assignments including a final 10- to 15-page paper. Additionally, students will participate in several in-class writing workshops and peer critiques. Students will receive from the instructor timely comments on their writing skills, with suggestions for improvement.

Difference, Power, and Equity Notes: Maritime activity has long provided opportunities for some while creating tremendous hardships for others. From the slave trade and the encounters between native and European mariners to the power wielded by multi-national shipping conglomerates, this course investigates contests over power, empire, and capitalism as they played out on the maritime stage.

Attributes: AMST Space and Place Electives ENVI Humanities, Arts + Social Science Electives EXPE Experiential Education Courses HIST Group F Electives - U.S. + Canada HIST Group P Electives - Premodern

Fall 2022
SEM Section: 01 MW 9:00 am - 10:15 am Sofia E. Zepeda

Spring 2023
SEM Section: 01 MW 9:00 am - 10:15 am Sofia E. Zepeda

MAST 397 (F) Independent Study: Maritime Studies
Maritime Studies independent study.
Grading: yes pass/fail option, yes fifth course option
Distributions: No divisional credit

Fall 2022
IND Section: 01 TBA Nicolas C. Howe

MAST 398 (S) Independent Study: Maritime Studies
Maritime Studies independent study.
Grading: yes pass/fail option, yes fifth course option
Distributions: No divisional credit

Spring 2023
IND Section: 01 TBA Nicolas C. Howe

MAST 402 (S) Senior Seminar: Perspectives on Environmental Studies (WS)
Cross-listings: MAST 402 ENVI 412
Secondary Cross-listing
The Environmental Studies and Maritime Studies programs provide students with an opportunity to explore the myriad ways that humans interact with diverse environments at scales ranging from local to global. The capstone course for Environmental Studies and Maritime Studies, this seminar brings together students who have specialized in the humanities, social studies and the sciences to exchange ideas across these disciplines. Over the course of the seminar, students will develop a sustained independent research project on a topic of their choice, and they will have opportunities throughout the semester to meet with guest speakers to discuss environmental work outside the academy.
Requirements/Evaluation: active participation, discussion leading, several smaller assignments and multi-step capstone project
Prerequisites: declared major/concentration in Environmental Studies or Maritime Studies, ideally to be taken in final semester at Williams
Enrollment Limit: 14
Enrollment Preferences: Environmental Studies majors and concentrators, Maritime Studies concentrators
Expected Class Size: 10
Grading: no pass/fail option, no fifth course option
Unit Notes: required course for students wishing to complete the Maritime Studies concentration
MAST 404 (F) Coastal Processes and Geomorphology (QFR)

Secondary Cross-listing

Can people live safely along the coast? Recent events like SuperStorm Sandy and the Tohoku Tsunami have shown us how the ocean can rise up suddenly and wreak havoc on our lives and coastal infrastructure. Only educated geoscientists can evaluate the risks and define informed strategies to prevent future coastal catastrophes. Currently almost half the global population lives within 100 km of the coast, with a large percent of those living in densely populated cities (e.g., New York, New Orleans, Los Angeles, Shanghai, Hong Kong, Cape Town, Sydney, Mumbai). Despite the growing risks and challenges associated with climate change and rising sea levels, the coastal population continues to grow rapidly. To help ensure these growing populations can live safely along the coast requires a detailed understanding of the processes that shape the coastal zone. These processes act across a variety of scales, from deep-time geologic processes that dictate coastal shape and structure, to decadal-scale processes that determine shoreline position and evolution, to weekly and daily processes such as storms and tides. This course will provide an in-depth look at the forces--wind, waves, storms, and people--that shape the coastal zone, as well as the geologic formations--sandy beaches, rocky cliffs, barrier islands, deltas, and coral reefs--that are acted upon and resist these forces. Coastal dynamics are strongly affected by human interventions, such as seawalls, dredged channels, and sand dune removal, as well as by sea level rise and changes in storm frequency and magnitude associated with climate change. Finally, the course will provide students with a perspective on how the U.S. seeks to manage its coastal zone, focusing on sea level rise and coastal development. This class will include a quantitative lab that will use MATLAB software to model and evaluate various coastal processes. Students will gain a basic understanding of MATLAB functionality, and will be asked to independently apply what they have learned to various data sets provided by the instructor.

Class Format: lecture two times a week with a lab one time per week

Requirements/Evaluation: lab reports, quizzes, and an independent research project

Prerequisites: Either GEOS 104 or GEOS 210; or permission of instructor. No prior knowledge is necessary, but this course does build on principles used to explore complex scientific challenges.

Enrollment Limit: 12

Enrollment Preferences: senior Geosciences majors, then juniors

Expected Class Size: 10

Grading: yes pass/fail option, yes fifth course option

Unit Notes: As a 400-level seminar, this capstone course is intended to build on and extend knowledge and skills students have developed during previous courses in the major. This course counts toward the GEOS Group B Electives - Sediments + Life.

Distributions: (D3) (QFR)

This course is cross-listed and the prefixes carry the following divisional credit:

ENVI 404 (D3) MAST 404 (D3) GEOS 404 (D3)

Quantitative/Formal Reasoning Notes: This course will involve the use of MATLAB software to quantitatively analyze coastal process and geomorphological data.

Attributes: ENVI Natural World Electives GEOS Group B Electives - Sediments + Life

Fall 2022

LEC Section: 01 MWF 8:30 am - 9:45 am Alex A. Apotsos

MAST 493 (F) Senior Thesis: Maritime Studies
Maritime Studies senior thesis.

Grading: no pass/fail option, no fifth course option
Distributions: No divisional credit

Fall 2022
HON Section: 01 TBA Nicolas C. Howe

MAST 494 (S) Senior Thesis: Maritime Studies

Maritime Studies senior thesis.
Grading: no pass/fail option, no fifth course option
Distributions: No divisional credit

Spring 2023
HON Section: 01 TBA Nicolas C. Howe

Winter Study ---

MAST 31 (W) Sen Thesis: Maritime Studies

Maritime Studies senior thesis.
Class Format: independent study
Grading: pass/fail only

Winter 2023
HON Section: 01

MAST 99 (W) Independent Study: Maritime Studies

Open to upperclass students. Students interested in doing an independent project (99) during Winter Study must make prior arrangements with a faculty sponsor. The student and professor then complete the independent study proposal form available online. The deadline is typically in late September. Proposals are reviewed by the pertinent department and the Winter Study Committee. Students will be notified if their proposal is approved prior to the Winter Study registration period.

Class Format: independent study
Grading: pass/fail only

Winter 2023
IND Section: 01